
ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 9, September 2014

Copyright to IJARCCE www.ijarcce.com 7987

Security Solution for Android Application

Assessment

Aparna Bhonde
1
, Madhumita Chatterjee

2

 Department of IT, PIIT, New Panvel, Mumbai, India1,2

Abstract: Android Operating System is dominating the share of smartphones. Mobile applications like banking, e-shopping,

business apps used on these devices have become foundational tool for today‟s workforce. However the smartphone users are under

continuous threat of exposure and misuse of their personal information due to rapid growth of malware for android which
significantly exceeds that of any other platforms. Android being open platform supports the development of applications. Nowadays
one can publish an application after registration as a developer for USD25. Due to its availability to all android users, the android
market is the main channel of malware distribution. Along with its growth, the importance of security has also risen. A proportional
increase in the number of vulnerabilities is also happening to the extent that there are limited numbers of security applications
available to protect these devices. Among the security apps many antivirus which work on the application layer are present in the
market which claims the security. However, the efficacies of these applications have not been empirically established. After studying
the shortcomings and demerits of the available solutions, an enhanced security solution for android application assessment at the

operating system level is suggested. Due to this solution, we are able to mitigate attacks caused by malwares on android smart
phones due to variety of applications.

Keywords: Android, smartphones, application security, malware detection.

I. INTRODUCTION

OBILE computing is a fact of life in the modern

enterprise. With the rapid and everyday adoption of

mobile devices, enterprise applications have been

extended beyond the confines of the corporate network.

The large attack surface and the proliferation of mobile

devices have created a significant security challenge for

companies and the IT professionals. The mobile security

stack consists of the Infrastructure layer, Hardware layer,

Operating system layer and Application layer. Most of the

attacks that are registered are device based attacks,

network based attacks and the server based attacks. Out of

these the most prominently occurred attacks are the device

based attacks [4]. Attacks against the device are most

tangible, impactful and obvious to the average person.

However, a more dangerous scenario occurs when users

download unknown applications or from the Android App

Store. This could lead to information leakage or complete

compromise of the device, allowing attackers to install

malicious certificates, reconfigure proxy settings or allow

man-in-middle (MiTM) visibility into every user

transaction. Hence according to [5] the application layer

has the largest attack surface where maximum damage to

security occurs.Gartner analysis [15] says that Android is

an open source operating system, prominently led by

Google, is having the maximum market share, where

developers can develop their applications and make it

available in the market to the users.

There is a great difficulty to find out the authenticity of the

applications which are downloaded by millions of people

every day on their smart phones. Hence to keep a check on

the malwares and the authenticity of the application we

need to have such a solution which is not dependent on the

third party.

Third party applications which are developed at the

application layer, if want to check the authenticity of the

downloaded application, than it requires the system

permissions to hook the package manager. But the fact is,

package manager does not grant system permissions, until

and unless the android system is root. According to [2] [3],

rooting is a process that allows attaining root access to the

Android Operating system code. It gives the privileges to

modify the software code on the device or install other

software that the manufacturer wouldn‟t normally allow to

do.

Customizing the android operating system is different than

the rooting process. Rooting is a cosmetic procedure and

does not make any changes to the operating system. It only

gives elevated privileges to the user-root access.

Hence we suggest a solution to customize the android

operating system which will scan for the malwares against

the signature database. This process of scanning the app

takes place before the installation of the application on the

smart phone. Hence up to certain extend it mitigates the

risk of the smart phone getting compromised due to

malicious android apps.

 The remainder of this paper is structured as follows. In

Section 2 the background theory is introduced which

includes Android system basics and the discussion of the

security system provided by android operating system.

The shortcomings of antivirus software on the Android

Platform are explained in Section 3. In Section 4 we

introduce our concept for an enhancement in the security

of android operating system. We will discuss the

implementation of the enhanced security solution for the

android platform and Section 5 will be the conclusion.

II. BACKGROUND THEORY

A. Android

Android is an operating system designed for smart phones

M

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 9, September 2014

Copyright to IJARCCE www.ijarcce.com 7988

which provide a sandboxed application execution

environment. A customized embedded Linux system

interacts with the phone hardware and an off processor

radio. The Binder middleware and the application API

runs on the top of Linux. Hence to simplify, an

applications only interface to the phone is through these

API‟s. Each application is executed within a Dalvik

Virtual Machine (DVM) running under UNIX uid[10].

The phone comes pre-installed with a selection of system

applications like phone dialer, address book. Applications

interact with each other and the phone through different

form of IPC (inter process communication).

B. Securable IPC mechanism

 Activity

An Activity is, generally, the code for a single, user-

focused task. It usually includes displaying a UI to the

user. Typically, one of the application‟s activities is the

entry point to an application. Intents are used to specify as

Activity, and this may be done ambiguously to allow the

user to configure their preferred handler.

 Broadcasts

Broadcasts provide a way to send messages between

applications, for example, alerting listeners to the passage

of time, an incoming message, or other data. When

sending a broadcast as application puts the message to be

sent into the intent. The application can specify which

Broadcasts they care about in terms of the intents they

wish to receive by specifying an Intent Filter. Broadcast is

instantiated when an IPC mechanism known as an Intent is

issued by the operating system or another application. An

application may register a receiver for the low battery

message, for example and change its behavior based on

that information.

 Services

Services are background processes that toil away quietly

in the background. It can run in its own process, or in the

context of another application‟s process. Other

components „bind‟ to a service and invoke methods on it

via a remote procedure calls. A service might play music,

even when the user quits the media –selection UI, the user

probably still intends for the music to keep playing and

others handle incoming instant messages, file transfers or

email. Services can be started using intents.

 Content Providers

Content Providers provide a way to efficiently share

relational data between processes securely. They are based

on SQL and should be used carefully.

Content Providers can be secured with Android

permissions, and used to share data between processes,

like files might be on traditional UNIX like systems.

 Binder

Binder provides a highly efficient communication

mechanism on Android.

 Figure 1. Android‟s IPC Mecahnism

It is implemented in the kernel, and you can easily build

RPC interfaces on top of it using the Android Interface

Definition Language (AIDL). Binder is commonly used to

bridge Java and native code running in separate processes.

The key security features of android to achieve the

objectives like protection of user data, protection of

system resources including the network and provide

application isolation are as follows:

1. Robust security at the OS level through the Linux

kernel.

2. Mandatory application sandbox for all

applications.

3. Secure inter process communication.

4. Application signing.

5. Application defined and user granted

permissions.

C. Installation process of Android Application

An Android Application is stored in an APK file. In order

to run the app one needs to install the required APK file.

An APK file consists of java class files and the libraries as

shown in fig. At the time of application installation, the

list of permissions [11] is asked to the user. If the user

agrees to the listed permissions and clicks install then the

installation takes place. There are 2 types of applications,

one being from the Android Google Play store and others

are third party applications. If the application to be

installed is from third party then user has to enable the

installation from unknown resources.

Package Manager is an API that actually manages

application install, uninstall and upgrade. When an APK is

installed, Package Manager Parse the package (APK) file

and displays confirmation. When the user presses OK

button, Package Manager calls the method named

“installPackage” with these four parameters namely uri,

installFlags , observer, installPackageName. Package

manager starts one service named “package” which

actually carries out the processing of this service. Package

manager Service runs in the system service process and

installs daemon (installd) runs as a native process. Both

start at the same boot time.

Package installer

It is a default application for Android to interactively

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 9, September 2014

Copyright to IJARCCE www.ijarcce.com 7989

install a normal package. Package installer provide user

interface to manage applications/ packages. Package

Installer calls InstallAppProgress activity to receive

instructions from the user. InstallAppProgress will ask

Package Manager Service to install package via installd.

The following process executes in the Package Manager

Service which is also shown in fig

1 Waiting.

2 Add a package to the queue for the installation

process.

3 Determine the appropriate location of the package

installation.

4 Determine installation Install/Update new.

5 Copy the apk to a given directory.

6 Determine the UID of the app.

7 Request the installed daemon process.

8 Create the application directory and set

permissions.

9 Extraction of dex code to the cache directory.

According to [2] the android OS revels only the

permissions to the user. It also checks from its Google

play store database whether the app is authentic or not. But

the issue is user cannot judge just by displaying the

permissions whether the app is malicious or not. Hence

leads to unknowingly spreading the malware. Hence there

is a need for solution at the application layer

 Figure 4. Working of Package Manager [3]

Solutions for preventing Malwares

Currently according to [6] there are many antivirus

available in the market to scan the APK for malwares, but

mobiles are among the resource constrained devices hence

the applications need to have limited processing, low

memory and operate on low power mode due to finite

energy supply [12].

The major limitation in using anti-virus application is it

scans the system for malwares after the installation of the

Apk file. Hence it fails in case of malwares which spreads

and attacks the working of anti-virus application itself.

III. LIMITATION OF ANTI-VIRUS

Mobiles are among the resource constrained devices hence

the applications need to have limited processing, low

memory and operate on low power mode due to finite

energy supply. According to [7] the antivirus software

majorly consumes the battery which reduces the

performance of the smart phones. Android Anti-Virus

software is also limited drastically by file system-based

sandboxing. It cannot scan the file system on demand or

monitor file system changes. Most importantly, this

includes the working directories of the other apps. Anti-

Virus software is thus oblivious to any files other apps

might download or create at runtime, including malicious

code [6].

1. Package Database

The android OS keeps track of installed apps in a package

database [13]. This database contains the code path where

an apps package file with its byte code is stored; the apps

package name, its UID and other entries. In contrast to

many other android OS resources, the package database is

publically readable.

2. Package File

Access Package files themselves is also readable by any

app. This in combination with package database being

readable provides access to package files. Antivirus

software can acquire the path to package files from the

package database and then open package files directly.

This way, common antivirus detection techniques can at

least be applied to the static app installation package file.

Antivirus basically works on 2 methods that are heuristic

and signature based [6]. Heuristic methods is to analyze

the suspicious files characteristics and behavior to

determine if it is indeed malware, where signature based

method identify known malware saved on the database. If

the virus then reappears, it can be identified as such using

the signature and assigned to a specific virus. According to

[6], Android antivirus cannot deploy recognition

techniques based on the heuristics to arbitrary file system

objects, and especially not to apps working directories

contents. Thus, dynamically downloaded code will not be

found. This dynamically fetched code may also be the

only component which openly demonstrates malicious

behavior, keeping the app which downloaded the

malicious payload free of any suspicion and detection.

So Major hindrance for antivirus software is,

1. The android OS itself uses unique user IDs to

create each Android process which is the concept of

sandboxed applications. Hence it‟s unable to directly

access the file system and its contents.

2. When a virus tries to modify core system files or

affect other vital parts of the android device, existing

antivirus software can‟t recognize that because it isn‟t able

to access the root of the system.

In other words, rooting android could be the only solution

to androids security problems.

IV. PROPOSED MODEL

Android‟s source code is released by Google under the

Apache license, this permissive licensing allows the

software to be freely modified by users. Android device

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 9, September 2014

Copyright to IJARCCE www.ijarcce.com 7990

owners are not given root access to the operating system

and sensitive partitions such as /system is read-only.

However, root access can be obtained by exploiting

security flaws in android, which is used frequently by the

open-source community to enhance the capabilities of

their devices.

Fig 4. My App based software installer

In our proposed system we are trying to develop a third

party application which requires system permission to

hook the package manager as shown in fig.4. In Android

OS the package manager has defined some protection

levels for the permissions, which are grouped on

1. Regular, a lower-risk permission that gives

requesting access to isolated application level features

with minimal risk to other applications the system or the

user. The system automatically grants this type of

permission to a requesting application at installation,

without asking for the user‟s explicit approval.

2. Dangerous, a higher-risk permission that would

give a requesting application access to private user data or

control over the device that can negatively impact the user.

Because this type of permission introduces potential risk,

the system may not automatically grant it to the requesting

application. For example any dangerous permission

requested by an application may be displayed to the user

and require confirmation before proceeding or some other

approach may be taken to avoid the user automatically

allowing the use of such facilities.

3. Signed is a permission that the system grants only

if the requesting application is signed with the same

certificate as the application that declared the permission.

If the certificates match, the system automatically grants

the permission without notifying the user or asking for the

user‟s explicit approval.

4. Signatures or System is a permission that the

system grants only to applications that are in the android

system image or that are signed with the same certificate

as the application that declared the permission. Please

avoid using this option , as the signature protection level

should be sufficient for most needs and works regardless

of exactly where applications are installed. This

permission is used for certain special situations where

multiple vendors have applications built into a system

image and need to share specific features explicitly

because they are being built together.

According to [8][9], Permissions in the first two groups

can be granted to any application, where as the last two

can be obtained only by applications which are system

preinstalled in the device‟s firmware or which are signed

with the platform key, i.e. the same key that was used to

sign the firmware.

Fact is Package Manager does not grant system

permissions to hook until and unless the android system is

root. It gives the privileges to install other software that

the manufacturer would not normally allow to. Hence for

good mobile security reasons they don‟t want users to

make modifications to the phones that could result

accident beyond repair

Android users are restoring to them because of the

powerful perks they provide, such as:

1. Download of any app, regardless of the app store

they are posted on.

2. Extended battery life and added performance.

3. Updates to the latest version of Android if your

device is outdated and no longer updated by the

manufacturer.

Rooting is a cosmetic procedure and does not make any

changes to the operating system. It only gives elevated

privileges to the user-root access.

Figure 5. Block diagram of Proposed Model

To secure the Android operating system from the malware

attacks, the APK should be scanned before it gets installed

on the android operating system. Hence to achieve this, we

need to customize the operating system as the

development needs to be in root. Hence the proposed

model requires cooking the device firmware and adding a

custom package scanning agent into the firmware. Next

we need to add an activity into that agent on package

manager. The activity is triggered by the package manager

when an application tries to get install. The My app will

get the location of the app and pass it to generate the

checksum using secured hash algorithm [14] and checks

across the database for malicious signature. Finally, if the

signature is found in the database then the installation

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 9, September 2014

Copyright to IJARCCE www.ijarcce.com 7991

process is blocked and if the application is without any

malwares the installation process is carried out by giving

result to the package manager. A notification file is

formed in which the latest scan results will be stored for

saving the time of scanning the same application file again

and again. The block diagram depicts the flow of the

proposed model.

About the Serverside dependencies the system works on a

thin client totally and has very few serverside

dependencies. At the server side the database is developed

by applying secured hash algorithm for the known

malwares. The application needs to get updated with this

database at a regular time interval.

The objective of the above model is to

1. Secure the Android OS from malware before apk

file installation takes place.

2. Block the installation process if the app is

malicious.

3. Improve the performance of the resource containt

device by triggering the application only at the time of

installation of the APK file.

The database is stored on the sdcard of the device. Further

work to categorise the malware families and applying the

partition key in the database leads to quick match of the

malware if present in the database. This will increase the

efficiency of finding the signature in the database and

reducing the time required to check. Through this model

we are trying to include more security at the operating

system level.

V. CONCLUSION

Due to androids secured IPC mechanism antivirus

software is not very effective on android platform.

However there is significant increase in the growth of

malwares, hence an effective malware detection technique

above the android operating system adds one more layer of

security. Our contribution to this area is detecting the

malware on the android system before it gets installed, due

to this detection technique the possibility of spreading the

malware after installation is totally ruled out. Traditional

signature based detection is impemented in this model and

we look forward to some more advanced detection

techniques which could work hand in hand with the

current sandbox based file system limitations. This process

does not toil in the background as it triggers only on

arrival of apk hence less amount of power is consumed

which is very important parameter to increase the

efficiency of a mobile device.

In a nutshell, an attempt for mitigating the malware attacks

with achieving efficiency on the widely used operating

system, android is done. Results show that we were able to

detect malware apks and prevent them from getting

installed. Testing this model across many more malware

samples will be part of our future work.

REFERENCES
[1] Fraunhofer AISEC, Android OS Security: Risks and Limitations, A

Practical Evaluation Version 1.0, by: Rafael Fedler, Christian

Banse, Christoph Kraub and Volker Fusenig.

[2] University of California ,Berkeley, Android Permissions Demystied,

by: CCS11, October 1721, 2011, Chicago, Illionois USA Adrienne

Porter Felt, Erika Chin, Steve Hanna, Dawn Song, David Wagner

apf, emc, sch, dawnsong, daw@ cs.berkeley.edu

[3] Package Manager In Depth, In Depth: Android Package Manager and

Package installer, http://java.dzone.com/articles/depth-android-

package-manager

[4] Mobile Security, Identifying the Mobile Security Stack,

http://blog.veracode.com/2011/03/identifying-the-mobile-security-

stack/

[5] Reference Architecture, Mobile Security Reference Architecture, by

CIO Council and US Department of HomeLAnd Security May

2013, https://cio.gov/wpcontent/uploads/2013/05/Mobile-Security-

Reference-Architecture.pdf

[6] 2013 IEEE, An AntiVirus API for Android Malware Recognition, by

Rafael Fedler, Marcel Kulicke and Julian AISEC Garching near

Munich, Germany rafel,kuliche.schuette@aisec.fraunhofer.de

http://ieeexplore.ieee.org(PISNumber3A6703677)

[7] Review August 2013, AV-Comparatives Mobile Security,

http://www.av-comparatives.org/wp-

content/uploads/2013/08/avc_mob_201308_en.pdf

[8] Permission, Android Development Guide,

http://developer.android.com/guide/topics/security/permissionas.ht

ml

[9] Permission Element, Android development Guide,

http://developer.android.com/guide/topics/manifest/permission-

element.html

[10] Systems Internet Infrastructure Security Laboratory. Department of

Computer Science and Engineering. The Pennsylvania State

University, A Study of Android Application Security, by William

Enck, Damien Octeau, Patrick McDaniel and Swarat Chaudhari

http://dl.acm.org/citation.cfm?id=2028088

[11] Symposium on Usable Privacy and Security (SOUPS) 2012, July

11-13,2012, Washington, DC, USA, Android Permissions: User

Attention, Comprehension and Behavior by: Adrienne Porter Flet,

Elizabeth Hay, Serge Egelman, Ariel Haneyy, Erika Chin, David

Wagner Computer Science Department School of Information.

University of California, Berkeley

[12] Smart Devices, Ubiquitous Computing Smart Devices,

Environments and Interactions by: Stefan Poslad Queen Mary,

University of London, UK

[13] J.Burns. Exploraory Android Surgery (talk slides), Black Hat

Technical Security Conference USA, May 2009.

http://www.blackhat.com/html/bhusa-09/bhusa-09-archives.html

[14] NIST, Descriptions of SHA-1

http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/SHA1.p

df

[15] Gartner research Smartphone sales operating system

http://www.gartner.com/newsroom/id/2665715

[16] Android APK Architecture,

http://devmaze.wordpress.com/2011/05/22/android-application-

android-libraries-and-jar-libraries/

	Android
	Securable IPC mechanism
	Installation process of Android Application
	Solutions for preventing Malwares

